CollaborativeCoding.metrics.EntropyPred ======================================= .. py:module:: CollaborativeCoding.metrics.EntropyPred Classes ------- .. autoapisummary:: CollaborativeCoding.metrics.EntropyPred.EntropyPrediction Module Contents --------------- .. py:class:: EntropyPrediction(num_classes, macro_averaging=None) Bases: :py:obj:`torch.nn.Module` Base class for all neural network modules. Your models should also subclass this class. Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:: import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x)) Submodules assigned in this way will be registered, and will also have their parameters converted when you call :meth:`to`, etc. .. note:: As per the example above, an ``__init__()`` call to the parent class must be made before assignment on the child. :ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool .. py:attribute:: stored_entropy_values :value: [] .. py:attribute:: num_classes .. py:method:: __call__(y_true: torch.Tensor, y_logits: torch.Tensor) Computes the Shannon Entropy of the predicted logits and stores the results. Args: y_true: The true labels. This parameter is not used in the computation but is included for compatibility with certain interfaces. y_logits: The predicted logits from which entropy is calculated. Returns: torch.Tensor: The aggregated entropy value(s) based on the specified method ('mean', 'sum', or 'none'). .. py:method:: __returnmetric__() .. py:method:: __reset__()