CollaborativeCoding.models.magnus_model ======================================= .. py:module:: CollaborativeCoding.models.magnus_model Attributes ---------- .. autoapisummary:: CollaborativeCoding.models.magnus_model.image_shape Classes ------- .. autoapisummary:: CollaborativeCoding.models.magnus_model.MagnusModel Module Contents --------------- .. py:class:: MagnusModel(image_shape, num_classes: int) Bases: :py:obj:`torch.nn.Module` Base class for all neural network modules. Your models should also subclass this class. Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:: import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x)) Submodules assigned in this way will be registered, and will also have their parameters converted when you call :meth:`to`, etc. .. note:: As per the example above, an ``__init__()`` call to the parent class must be made before assignment on the child. :ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool .. py:attribute:: layer1 .. py:attribute:: layer2 .. py:attribute:: layer3 .. py:method:: forward(x) Defines the forward pass of the MagnusModel. Args: x (torch.Tensor): A four-dimensional tensor with shape (Batch Size, Channels, Image Height, Image Width). Returns: torch.Tensor: The output tensor containing class logits for each input sample. .. py:data:: image_shape :value: (3, 28, 28)